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1. Introduction 

The standard Glashow-Weinberg-Salam (GSW) model [l] of electroweak in- 

teractions based on the gauge group SU(2)h x V(l)y has achieved important 

successes in describing neutral and charged current processes and in correctly pre- 

dicting [2] the mass of the IV- and Z-bosons. However, essential ingredients of a 

renormaliaable spontaneously broken gauge theory such aa the standard model 

have not been confronted with experiment yet. In particular, the Yang-Mills 

structure of the self-couplings of the intermediate vector bosons and the Higgs- 

mechanism have not been tested. Moreover, experiments have not been accurate 

enough so far to probe the standard model much beyond tree level. 

It is therefore still conceivable that the intermediate vector bosons are com- 

posite objects rather than the elementary gauge bosons of a spontaneously broken 

SU(2)5 x U(l)y gauge theory. Composite W- and Z-bosons occur in preon mod- 

els of quarks and leptons [3] where the substructure scale AH is related to the 
-l/2 

Fermi scale of the weak interactions, Aa - Gp = 300 GeV. If the preon 

Lagrangian is invariant under global SU(2),, weak isospin transformations and 

vector dominance is invoked [4] such models yield the standard predictions for the 

neutral current structure and for the maasea of W- and Z-bosons. On the other 

hand a spectrum of additional heavy vector bosona would constitute a main and 

direct experimental signature for such a richer short distance structure. The exact 

nature of this spectrum remains model dependant but some general features are 

nevertheless evident. Independently of the underlying preon model one always ex- 

pects excited W’s and Z’s [S]. Furthermore, if the constituents of the intermediate 

vector bosons are colored objects, color octet partners of W and Z should appear 

[6] . Finally, many models predict additional isoscalar weak vector bosons with 

masses in the few hundred GeV range (see e.g. refs. [7], [8] and [9]). 

While a direct exploration of such particles must, most likely, await the con- 

struction of a multi-TeV hadron-hadron collider [lo], virtual effects of the new 

particles may already show up at much lower energies. In this paper we would 

like to discuss the effects of isoscalar weak vector bosons at LEPI/SLC and LEPII, 

and try to assess what the capabilities of these colliders are to set new limits on 

the parameters characterizing these particles. As a result, we shall conclude that, 
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provided that LEPII will be built, isoscalar weak vector bosons with a maas of up 

to 1 TeV can be excluded, or that necessarily deviations from the standard model 

have to show up. 

Isoscalar weak vector bosons manifest themselves in high energy e+e- collisions 

in two different ways: 

i) The physical Z-boson feels the mixing in of the new vector bosons. As a 

result, the exact values of the mass and the couplings of the Z will differ from the 

standard model predictions. 

ii) Due to the exchange of an additional vector boson, the e+e- -+ P+/L- 

cross-section and, even more importantly, the electroweak asymmetries may be 

significantly changed. 

In our paper we shall discuss in depth both issues. In particular, we shall 

present an analysis of the electroweak asymmetries for the most general case of two 

massive vector bosons with completely arbitrary vector and axial-vector coupling 

constants. This analysis can be directly applied to models with composite isoscalar 

weak vector bosons, as well aa to other models with new massive vector bosoms 

like GUT’s [ll] , left-right symmetric [12] or superstring inspired [13] models. 

Our paper will, therefore, be also useful for studying asymmetries in such models. 

Given certain experimental accuracies for quantities measured at LEPI/SLC and 

LEPII, we shall then estimate limits on the parameters characterizing isoscalar 

weak vector bosons which one should be able to obtain, provided that no deviations 

from the standard model are observed. This will show us which quantity is most 

sensitive to the presence of isoscalar weak vector bosons, how useful polarization of 

the incident electron beam or the higher energy of LEPII are, and how accurately 

the standard model can be tested at future e+e- colliders. 

Two possible scenarios for isoscalar weak vector bosons will be considered. In 

scenario A we investigate an isoscalar vector boson Y which couples to the weak 

hypercharge current. In scenario B, on the other hand, the isoscalar YL couples 

only to the lefthanded part of the weak hypercharge current. The first scenario 

corresponds to the situation where the preon Lagrangian has a global symmetry 

G 2 Su(2),, x U(l)Y, whereas scenario B may be realized if the compositeness 

scale of the righthanded sector is much larger than the one of the lefthanded sector, 
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or if righthanded quarks and leptons are elementary. Typical models of this type 

are the ones analyzed in refs. [7] and [9]. H ere, only the lefthanded quarks and 

leptons are composite states. The YL-boson belongs to a 15-plet or a 143-plet of 

isoscalar vector bosons associated with a global SU(4) or SU(12) symmetry acting 

on the lefthanded fermions. 

Our paper is organized as follows: 

In Section 2 we consider the measurable quantities relevant for our purposes 

and give an overview over the corresponding standard model predictions. In Sec- 

tion 3 we discuss the influence of the Y(Y5) on the Z-mass and couplings and how 

this is reilected by measurable quantities at LEP and SLC. Section 4 is devoted 

to a careful analysis of the electroweak asymmetries. In the first part we shall 

present our general discussion of the asymmetries for two massive vector bosons 

which in the second part will be applied to the Y and YL. In Section 5, finally, we 

estimate those limits on the parameters characterizing the Y and Y5 which one 

should be able to derive from LEPI/SLC and LEPII experiments if no deviations 

from the standard model were to be observed. Section 6 contains our conclusions. 

2. Measurables and their Standard Model Predictions 

In this Section we would lie to discuss the measurable quantities which we 

will employ in our subsequent analysis, and review the standard model predictions 

for them. We shall consider five quantities which are sensitive to the presence of 

additional heavy vector bosons: the masses of W and Z, rn~ and Mz, the leptonic 

width of the Z-boson and the electroweak asymmetries AFB and ALE. 

2.1. THE Z-MASS MZ 

The most precise and most important quantity to be measured at LEPI and 

SLC is the Z-mass Mz which will set the scale for high-precision tests of the 

electroweak theory. The errors on Mz will be dominated by the uncertainty in 

determining the absolute energy scale E. If E can be measured with an accuracy 

of 6E/E = f3 1 10m4, Mz can be obtained with an error of 6Mz = 28 MeV [14]. 

In the standard model MZ is given by [15] 



where i2 = sin2ew, Bw is the Weinberg-angle, ?2 = 1 - J2 and 

2 4 
Ir =1-Ar 

with 

p; = ;(g = (37.281 GeV)2 . 

P-2) 

Here, GF denotes the Fermi-constant, GF = 1.166. 10e5GeVe2, and a(0) m 

(137.04)-l ls the electromagnetic coupling constant. The quantity Ar in Eq. 

(2.2) represents the radiative corrections to Mg at zero momentum transfer and 

depends on the t-quark maas mt and the Riggs-boson maas mu. For mr smaller 

than the W-mass mw, and ma in the range from 10 GcV to 1 TeV one finds 

Ar FJ 0.06...0.08 [16]. The effects of radiative corrections can to a very good 

approximation be represented by writing 

where a(Mz) is the running electromagnetic coupling constant at the scale m = 

MZ [14]. Since Eq. (2.4) includes only QED contributions it ceases to be valid for 

heavy top quark masses ( i.e. mrop in excess of 2mw ). 

2.2. THE W-MASS rnw 

Since the Z-mass by itself alone does not say anything about the validity of the 

standard model and therefore will be used aa a reference scale in experiments at 

LEPI/SLC, small deviations from the standard model in MZ due to the presence 

of an additional neutral heavy vector boson will reveal themselves only if also 

the W-mass rnw is measured with an accuracy comparable to the one of the 

Z-mass measurement. This can be done directly at LEPII using the reaction 

e+e- -+ W+W- [17]. The resulting error in mw is expected to be of the order of 

100 MeV. However, a similar precision in the determination of the W-mass may 

also be possible by combining the results of LEPI/SLC and the improved CERN 

pp collider (ACOL) (141. There, the ratio 

(2.5) 
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will eventually provide a more precise test of the electroweak theory than the 

separate measurements of IV- and Z-masses since it is free from the systematic 

error on the energy scale. With a realistic improvement of the detectors, such as 

that planned by UAl, one can presumably aim at a precision of (141 

6(Z) = f2 * 10-s . (2.6) 

Combining this with the precision measurement of Mg at LEPI/SLC yields an 

error in rng~ of the order of 266 MeV. In the standard model, A coincides with 

CO&W and is only a function of Mz. Thii can be easily seen by solving Eq.(2.1) 

for zi2. 

which then yields 

*++[py’)“” . 

2.3. THE LEPTONIC WIDTH OF THE Z-BOSON 

While the masses of the intermediate vector bosons are directly accessable at 

LEPI/II and SLC, information on the Z- couplings can only be gained indirectly 

from a measurement of either the total Z-width IZ or the leptonic width F(Z -+ 

@I?-); C = e, /.L, r. PZ can be directly obtained from the line shape of the Z-peak 

with an error expected to be of the order of 6I’g/I’Z FJ 2% [14]. l?(Z --t !+e-), 

on the other hand, can be determined using the luminosity monitor [14] 

I = 
/ 

6rr2 r2(Z + c+c-) 
u(W),+,-+~++w = - 

M; rz ’ (2.9) 

If I can be measured with 61/I B 2%, the leptonic Z-width can as well be obtained 

with an error of about 2 %. 

From the point of view of testing the Z-couplings I’(Z -+ L+!-) has to be 

preferred over PZ. The reason for this is twofold. First of all, r(Z + e+L-) is 

a theoretically “clean” quantity which, in the standard model, can be accurately 

predicted once MZ is known. Including electroweak radiative corrections one finds 

(neglecting the lepton masses) 

r(z -+ L+L-) = 12G& ~ M; (1 - 4i2 + 8g4) (1 + 6,) (2.10) 
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with S2 from Eq.(2.7). The quantity 6l represents the electroweak radiative cor- 

rection and turns out to be very small if the radiatively corrected formula (2.7) is 

used for Li2 [14]: 

St < 0.1% . (2.11) 

The total Z-width, on the other hand, is affected by strong interaction corrections 

and the uncertainty in the QCD coupling constant 0~~ introduces a theoretical error 

in PZ of the order of 1 %. The second reason for preferring I’(Z -+ L+L-) is that 

I’Z strongly depends on parameters such as rnt or the number of massless neutrino 

species which are presently completely unknown. In our subsequent analysis the 

total Z-width will, therefore, not be discussed further. 

2.4. THE FORWARD-BACKWARD ASYMMETRY AFB 

Another observable at e+e- colliders which is particularily sensitive to addi- 

tional heavy vector bosons and to the Lorentz-structure of their couplings is the 

integrated forward-backward asymmetry, defined by 

with 

F f B = [/d f /Jj dz *(‘+‘;-+ ” ; (2.13) 

s is the cosine of the angle between the fermion f and the beam direction and z 

the detector acceptance (z 5 1). The most precise determination of AFB can be 

performed on the Z-peak and if the llnal state fermions consist of muons. For an 

integrated luminosity of J fdt = 100 pb-l the experimental error is estimated to 

be [18] 

SA$-“‘+“-(Mz) w 3. 1O-3 . (2.14) 

For comparison, at the highest projected LEPII energy of fi = 190 GeV and 

with an integrated luminosity of 500 pb-’ the experimental error is expected to 

be about a factor ten larger than at resonance 1181, i.e. 

6A$i-“+“- (190 GeV) EJ 0.03 . 

The values for the integrated luminosities used above are typical estimates for a 

100 day running period at LEPI/II with unpolarized beams. If the electron beam 
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at LEPI/II could achieve a 50 % longitudinal polarization, as it will be possible 

at the SLC, the expected luminosity would be about a factor 2.5 smaller and the 

errors in AFB would increase by about a factor 1.6 [U]. 

In the standard model, the tree-level expression for AFB is given by 

e+e--q&+&i _ z 
AFB 

N 

with 

N-&8- 1 
4s 

p(s) ( +Pc%) + 2 $j [2ve + Pep + $,I , (2.17) 

(1 + v,” + 2Peuc) (2.18) 

where 

p(s) = (s - M;)2 + M;I’2, ; (2.19) 

s is the center of msss energy squared, gg = ~/cos&y, & = 4\/ZGFm&, PC is 

the degree of the longitudinal polarization of the e--beam and 

Ve = 1 - 4sir+y (2.20) 

is the Z vector coupling constant for charged leptons. The expression of AFB for 

an unpolarized e--beam can be obtained by setting Pe = 0 in Eqs. (2.16) to (2.18). 

Note that all terms containing Pe in Eqs. (2.17) and (2.18) are proportional to 

%r which is small because sin2& is close to l/4. Longitudinal polarization will, 

therefore, only slightly affect the shape of AFB in the standard model. 

The expression for AFB considerably simplifies on top of the Z-peak (s = Mi). 

In the narrow width approximation (PZ < Mz) we find 

AC+G-+p+p- 2% + Pe(l + u;, 
FE =2-- 

& 1% ,2 1 +u,2 +2p,u, * 
(2.21) 

In Fig. 1 we show the forward-backward asymmetry versus fi for Pe = 0 and 
efe-+p+p- z = 1. As one can see, AFB varies strongly in the neighbourhood of the 

Z-resonance with a zero at (PC = 0) 

s=M; l+ [ 8sin21J~cos2i?W]-1 
(2.22) 



and a minimum (maximum) at (for I’z < Mz, Pe = 0) 

s 
s-M; 

= 16 sin2 0~ cos2 0~ 

(1+ vi)2 
[2”,2 ‘F (4Vi + (1+ V;)2)‘/2] . (2.23) 

For Mg = 92 GeV the numerical values are \/~(AFB = 0) M 91.8 GeV, &,,,i,, w 

78.9 GeV and &,, FJ 114.3 GeV. 

Electroweak radiative corrections are known to influence AFB significantly. In 

general the corrected asymmetry can be written down as a sum of three terms: 

&B = Aw + 6A$gD + 6Ay$jk . (2.24) 

Some one-loop corrections can already be included by using the radiatively cor- 

rected value of sin28~. 6A$ED represents the real and virtual photon emis- 

sion and the one-loop photon vscuum polarization diagrams which contribute 

to the running Q which is already contained in (2.4). Finally, 6Ayik are the 

purely weak corrections to AFB which depend on the unknown quantities mt and 
Born rn~. At resonance, 6A’j$ik is a sizeable fraction of AFB and rather sensitve 

to mt and mH. For 30 GeV 5 mt < 180 GeV, 10 GeV 5 ma 5 1 TeV and 

90 GeV 5 MZ 5 98 GeV, 6Ayik can vary by as much as fO.O1 [19]. 

2.5. THE LEFT-RIGHT ASYMMETRY ALR 

The final quantity we want to discuss is the left-right asymmetry ALR. It 

requires a longitudinal polarization for the e--beam and is given by 

where a~,g are the cross-sections for ei,R + e+ + X, and X can be any channel. 

The most precise determination of ALR will be possible on top of the Z-resonance: 

for an integrated luminosity of 40 pb-’ with a 50 % longitudinally polarized e-- 

beam the error is estimated to be [IS] 

GA&Mz) FJ 1.5. 1O-3 

whereas for e.g. fi = 190 GeV and J &ft = 200 pb-’ [18] 

(2.26) 

(2.27) 6A5~(190 GeV) - 0.02 . 
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In the standard model, the tree-level expression for ALR reads 

ALR=P, 5 

with 

a--M; N’ = $ 1 ef 1 Si uf p(s) 

(2.28) 

(2.29) 

(2.30) 

and where ef is the electric charge (in units of e) and 

vf = l-4 1 ef 1 sin20W (2.31) 

is the vector coupling constant of the final state fermion f which we supposed to 

be massless. The above expression for ALR considerably simplifies on the Z-peak 

if the narrow width approximation is used. One finds 

ALR(Mz) = ape * . 
c 

(2.32) 

Note that ALR(Mz) is independent from the vector coupling constants of the 

final state fermions and, therefore, the same for all fermions with masses much 

smaller than Mg, except e and v,. In Section 4 we shall show that this is a unique 

feature of the standard model which is destroyed if a second massive vector boson 

is present. Comparing ALR in different channels on top of the Z-resonance will, 

therefore, be another important test for the standard model at LEPI/SLC. 

In Fig.1 we show A,Q/P~ versus fi for the channel e+e- -+ J.A+~-. Since 

Afi---p+p- is proportional to the vector coupling constant uer which itself is 

small, the left-right asymmetry does not vary very much. Similar to AFB,ALR 

has one zero which is located at 

2 

a = Mi [l + l&in:&~&e, 1-l 
and one minimum (maximum) at (Pz < Mz) 

(2.33) 

a 16 sin2 0~ cos’ 0~ 
5-M; 

= 
1 - v,4 

[1+ v,” ‘f (2(1+ v:))“z] (2.34) 
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in the standard model. The numerical values for MZ = 92 GeV are &(ALR = 

0) w 79 GeV, fi&,, FJ 67 GeV and fir,,,, M 100 GeV. 

Finally, we briefly discuss electroweak radiative corrections to ALR. Some of 

them can be included by using the radiatively corrected value of sin%W. Similar 

to the case of the forward-backward asymmetry, the purely weak corrections turn 

out to be a sizeable fraction of the Born term on top of the Z-resonance and are 

sensitive to mr and mH. They can vary by as much as f0.02 for 30 GeV 5 mt 5 

180 GeV, 10 GeV < mR 5 1 TeV and 90 GeV 5 Mz 5 98 GeV 1191. 

3. Isoscalar Weak Vector Bosons and Z-Boson Parameters 

We now turn to a more detailed discussion of the composite weak boson see- 

narios which we have briefly described in the introduction. In the first part of this 

Section we develop the effective Lagrangian formalism used to describe composite 

weak boson interactions and derive the Lagrangian for interactions of the Z-boson 

with quarks and leptons as well as the expression for the Z-mass in the presence 

of isoscalar weak vector bosons. In the second part we shall analyze how Y and 

YL affect the observable quantities mW/Mg and T(Z -+ L+L-). 

3.1. EFFECTIVE LAGRANGIAN FORMALISM 

To describe the interactions of fermions with the isotriplet of weak bosons, 

W, and the isoscalar Y(YL) we use an effective Lagrangian. The weak isospin 

W%, Y s mmetry is supposed to be a global symmetry of the underlying preon 

model in the limit of a vanishing electromagnetic coupling constant e = 6. 

The effective Lagrangian for the interaction of W and Y(Yj,) with quarks and 

leptons in the limit a + 0 is given by 

L = swjpLW/4 + suPqL)p 

where W, and F(L),, describe the W- and Y(YL)-field and 

(3.1) 

jpL = C-h$L , 
L 

.Y _ .YL 
JP - Jo + C &YRR , 

R 
(3.2) 
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.YL = .Y 
JP - JpL = c hrYLL 

L 

are the weak isospin and hypercharge currents; jfiyL is the lefthanded part of j,‘, 

L(R) runs over all lefthanded (righthanded) fermion SU(2),, doublets (singlets), r 

are the Pauli-matrices and ye = Q-T3 and yg = Q are the respective hypercharge 

quantum numbers. Q and T3, finally, denote the electric charge and the third 

component of the weak isospin, respectively. 

For IX # 0, the result of Eq. (3.1) is modified by the mixing of Y(YL) and W3 

with the photon [20] (VP, = a,V, - &I’,; V = W3, p(L); Fpy = && - &x,,) 

Lm;. = -~xw(Fp”w3~v + F:““w;“) - ;Ay(F/q + PF(L)py) (3.3) 

where &, denotes the photon field. Thii mixing and the saturation of the electro- 

magnetic form factors by massive vector bosons (W3- and Y(YL)-dominance [4]) 

relates the mixing strengths Xw and Ay to the electric charge unit e via 

gwXw = gyXy = e . (3.4) 

The W3- and Y (YL)-vector boson dominance thus implies a universal coupling 

of the fermions to the respective vector bosons, namely gw and gy. 

The physical content of the model can easily be obtained after removing the 

mixing term by the nonunitary transformation 

(3.5) 

Here, A,,, Z, and Y(L),, denote the physical photon, Z- and Y(YL)-fields, 

b;=l-+X$+X& 4v +x2 m”y 

(m$ - M,?)2 ’ (m$ - M,?)2 (3.6) 

with i = Z, Y and My is the physical Y(YL)-mass. The unobservable “bare” msss 

my (before mixing with the photon) of the Y(YL)-boson and Xw can be related 

to My and GF by [lo] 

2 

““y = Mc 0 -l t 
& 

(1-$$f;- mk) I (3.7) 
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xk = e2 fi I 
$75 . (34 

According to Eqs. (3.4) - (3.7), the effects of Y(Y5) are characterized by the two 

parameters Xy and My. Since m$ has to be nonnegative, A$ is bounded from 

above by [lo] 

M; 
x2y~x$,,=1-x~M2-m2 Cl-&. 

Y w 

Using the transformation Eq. (3.5) we can now determine the Z-mass and the 

effective Lagrangian for the interactions of the Z-boson with quarks and leptons. 

We find: 

M;= 4 ““y 
l-X$-X$ M; 

(3.10) 

and 

Lzff = Liz & + b ‘qL) - s&j;“] Z, , (3.11) 

where jzL denotes the third component of the weak isospin current, J;“’ the elec- 

tromagnetic current, 

(3.12) 

&“i-m% 
Mg--rn[ 

and, finally, 

(3.13) 

Note that s& formally agrees with sin28w which multiplies the jl”’ term in the 

standard model. 

Eqs. (3.10) - (3.14) show that in presence of Y(YL) the Z-mass and couplings 

deviate from the standard model predictions. In addition to the weak isospin and 

the electromagnetic current, the Z-boson couples also to j,‘(j,‘“) with relative 

strength 6 which for Mf > rn& can approximately be written as 

6m- % &J 
l-X:,-AZ, tiy 
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If My lies in the few hundred GeV range, as one should naively expect in a preon 

model with a scale AH N O(G;“2), the absolute value of 6 is of the order of a 

few percent. 

For the subsequent discussion of the leptonic width of the Z-boson and the 

electroweak asymmetries, it is convenient to express Lfzff in terms of vector and 

axial vector coupling constants V,‘(V,‘“) and As(AF) respectively. One obtains 

Lzff = Z, [~f+~“’ + Al;‘L’rs)l] 

where in the Y-case 

m+-rn& 

tiz-m$ 
T3 

$3” bZ M;ngQ - Aff 

and in the YL-case 

+-4. bz Mz,,,$Q + Ag 

VP = -L(l- M2mjm2 
bz 

IQ-&. 
z Y 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

In Eqs. (3.17) - (3.20) we have used that yr, = Q - 7’3 and yg = Q. 

In the limit of a vanishing Y(YL)-photon mixing strength Xy Eq. (3.10) re- 

duces to the standard model expression for Mz. This can be easily seen by ob- 

serving that rnt -+ M+ for X$ + 0 (see Eq. (3.7) ) and using Eq. (3.8) for X&. 

In this limit also iZ and s$ approach their standard model values e/sinBWcosBW 

and sin2&, respectively. However, since gyXy = e (see Eq. (3.4)) is a constant, 

6 does not go to zero for Xc -+ 0. For small values of X$ we find 

6^. 
X&m2, 

--(I--i$,)M;-rn$ 

M#-rng 
(1+X2y(l--X~)M+m$’ 

(3.21) 

6 vanishes only for My + 00. 

Eqs. (3.7) - (3.14) represent the tree-level results for the mass and the couplings 

of the Z-boson. Since we are interested in implications of Y (Yl;) at LEPI/SLC and 
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LEPH energies, i.e. at a scale p2 2 Mi, we should also take into account radiative 

corrections. However, the effective theory of composite weak vector bosons we are 

working with is nonrenormaliiable and a full renormalization program, therefore, 

cannot be carried out. Nevertheless, the evolution of the leading log corrections 

can be done in the framework of the effective field theory approach [21] and this 

modifies e (there are no leading log corrections to Gp) in the same way as in 

the standard model, provided that the particle spectrum below rnw is the same. 

Vector dominance guarantees that the corrections to o! are finite to all orders in 

perturbation theory [22]. Subsequently, we, therefore, shall use the radiatively 

improved value of e (i.e. a B l/128) in Eqs. (3.4), (3.8), (3.12) and (3.17) - (3.20). 

3.2. PENOMENOLOGICAL IMPLICATIONS 

Using the expressions for the Z-mass (Eq. (3.10)) and the vector and axial 

vector coupling constants (Eq. (3.17) - (3.20)) t i is now rather straightforward to 

study the implications of Y(Y5) on measurable quantities. Here, we would like to 

concentrate on two observables: the ratio mW/M,g, which, as we have discussed in 

Section 2, can hopefully be measured very accurately at ACOL, and the leptonic 

width of the Z-boson. The influence of Y(Y5) on electroweak asymmetries will be 

discussed in detail in Section 4. 

In Fig. 2 we present plots for mw/Mz versus Mz for various values of My 

and X;. Fig. 2a shows the variation of mw/MZ with X5 for My = 500 GeV, 

whereas Fig. 2b illustrates how mW/Mz versus MZ behaves ss a function of My 

for Xc = 0.2. For values of My and X5 different from those chosen in Fig. 2a 

and 2b respectively, curves of a similar shape are obtained. For comparison, we 

have also included in Fig. 2 the standard model prediction for mpy/Mz taking 

into account leading log corrections (see Eqs. (2.4) and (2.8)) which, as we have 

seen in Section 2, very accurately represent the complete O(a) corrections to rnw 

and MZ. 

Before we discuss Fig. 2 in more detail we would like to make a general re- 

mark about how one should compare standard model and composite weak boson 

model results. Since we can only include leading log corrections in the effective 

theory we are working with, composite weak boson model predictions should be 

compared with standard model calculations where also only leading log correc- 
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tions have been taken into account. A comparison with the results of a complete 

oneJoop calculation would make sense only if one could carry out a full renor- 

malization program for the effective theory of composite weak boson interactions. 

This is, however, not possible since the effective theory is nonrenormalizable and 

we, therefore, cannot do better than comparing composite W-boson model and 

standard model predictions both at the leading log level. 

From Fig. 2 we observe that the Y- and YL-boson affect the ratio mw/Mz 

in the same way. Furthermore, we see that mW/Mz is always larger than in the 

standard model and increases (decreases) with increasing values of X6 (My). In 

the limit X”y -+ 0 (for f?xed My) and My -+ 00 (for 6xed A&) we recover the 

standard model prediction for mW/MZ. 

In Fig. 3 we display the leptonic Z-width (lepton masses are neglected) 

r(z + L+r) = 2 (VP)’ + A$q2) , 

@ = e,p, r, versus MZ for various values of X5 and My, together with the standard 

model prediction in the leading log approximation which we obtain by setting 

6, = 0 in Eq. (2.10) and employing Eqs. (2.4) and (2.7). Fig. 3a shows how 

T(Z + @?-) changes with .I& for My = 500 GeV while Fig. 3b presents results 

for X5 = 0.2 when My is varied. For values of My and A& different from those 

in Fig. 3a and 3b respectively, curves of a similar shape are obtained. As one can 

see, Y and YL influence the leptonic Z-width in a completely different way. While 

T(Z + L+L-) is in the Y-case larger than in the standard model, the contrary is 

true if the underlying preon model contains a YL-boson. For increasing My (At) 

the deviation of the leptonic Z-width from its standard model value decreases 

(increases) and vanishes in the limit My + 00. On the other hand, since 6 

remains finite for X$ + 0 (see Eq. (3.21)), I’(Z + !+6-) may differ appreciably 

from the standard model result even for very small values of X$. This is illustrated 

by the two X5 = 0.0 curves in Fig. 3a. 

From Fig. 2 and Fig. 3 we recognize that both, mw/Mz and r(Z + e+f-), 

may be significantly affected by the Y (YL)-b oson. High precision measurements of 

Mz, mw/Mz and the leptonic Z-width should, therefore, result in rather stringent 

bounds on the parameters My and X$, p rovided that no deviations from the 
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standard model are observed. We will return to these questions in detail in Section 

5. 

4. Electroweak Asymmetries 

We will now consider the electroweak asymmetries in more detail. In the first 

part of this Section we shall present the tree-level expressions for AFB and ALR 

for the most general case of two massive vector bosons with completely arbitrary 

vector and axial vector coupling constants and discuss some of their properties. 

Special emphasis will be given to the location of the zeros of AFB and ALR since 

this will give us some hints how the shape of the electroweak asymmetries versus 

fi in the two vector boson csse might look lie, and how big the deviations from 

the standard model predictions might be. In the second part of this Section we 

study AFB and ALR in the Y- and YL-case, thereby verifying the correctness of 

the results of the general analysis in the first part. 

4.1. GENERAL DISCUSSION 

We start with some definitions. We assume that in addition to the photon two 

massive neutral vector bosons Vi and Vj, with mssses Mi and Mj, contribute to 

the reaction e+e- + ff in the s-channel. The Yk/f, k = i, j, vector and axial 

vector coupling constants are denoted by ukf and ekf, respectively. Finally, Ti,j 

is the total width of Vi,je 

Using the definitions (2.12), (2.13) and (2.25) it is now straightforward to 
e+C-+ff calculate the tree-level expressions for A,, and Afi--rf, f # e, v,. One 

obtains 
e+e-+ff _ 

AFB - 

z (1 - Pe) Ch,,h, hfhe I Wf,h) I2 +2pe Ch, hf I F(hfY 11 I2 

(1 - pe) &,,h. 1 F@fa he) I2 +2pe ch/ I F(hf* l) I2 
(4.1) 

and 

where 

e+e-+ff _ 
A,, - pe 

%,,h. he 1 F(+ he) I2 

Ch,,h, I Wv,he) I2 
(4.2) 
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e2 1 (sir - hfqf)(Uic - h,ai,) + ~ (~if - hfajf)(tJjc - h,aje) 
-;ef + a 

s - M,? + iMiI’i 4 s - Mf + iMjrj (4.3) 

Lnd hf,e = *l are the helicities of f and e, respectively. 

While Eqs. (4.1) - (4.3) are in a form convenient for numerical evaluation, they 

offer little insight into the general properties of Apg and ALR. However, if Vi and 

Vj couple universally to charged leptons, some information on the electroweak 

asymmetries for the most important channel e+e- -+ /A+P- may be gained by 

performing the sums in Eqs. (4.1) and (4.2). It turns out that 

i) if one of the resonances couples in a purely righthanded way to charged lep- 

tons it has no influence on AFB if the incident electron beam is fully lefthandedly 

polarized, i.e. if PC = 1. 

ii) if both, Vi and Vi couple purely vector like, or if one vector boson cou- 

ples vector like and the other one axial vector like to charged leptons, AFB is 

independent of Pe and ALR vanishes. 

iii) ALR(Mz) depends in general on the final state fermion vector and axial 

vector coupling constants, contrary to the one boson case (see Eq. (2.32)). 

In general, useful information on the shape of Apg and ALR versus fi can be 

obtained from the positions of the maxima, minima and zeros of the electroweak 

asymmetries. While we were not able to find analytical solutions for the minima 

and maxima, it is easy to see that requiring AFB = 0 and ALR = 0, respectively, 

leads in both cases to equations cubic in s. Therefore, there are at most three 

zeros (apart from a trivial one at s = 0) in AFB and ALR. 

In view of practical applications where one of the massive vector bosons has to 

be identified with the Z-boson, let us study in somewhat greater detail the zeros 

in the case of e+e- + /L+/A- where 

a) Vi and Vi couple universally to charged leptons and where 

b) we assume 

I’i < Mi and Vie FJ 0 (4.4) 

ewe--+/d-p- 
Under these simplifying assumptions we find for the zeros in AFB 
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with 

82,3 = Mj + & (-B k JG) (4.6) 

A = 2e2(afe + rj,aj,) + ~~~~~~e(~je + 6j,) + iVicafe6j, , (4.7) 

B = 2e2a;,rj,(Mj -Mf) + ~V~~“%6j~Mj2+ ~~~~~~,Cr,c +Sjc)(2Mj -Mf) , (4.8) 

C = f$&Mf(Mf - M~)(7j, + 6je) + 2e2&M# , (4.9) 

rj~ = 1 - Pe ~ 1 
=je 

(4.10) 

6je = 1 - Pe ~ , 
vje 

and for the zeros in A~‘~fRc---‘p+p- we derive 

(4.11) 

S,=Mf, (4.12) 

S2,3 = & (-8 f \lB2-4Ac) , (4.13) 

with 

A = 2e2 + ; (ai” + tJ$ + a;,, , (4.14) 

B = -(2e2 + $)Mj - (2e2 + iv& + ia&)Mf , (4.15) 

C = 2e2M?M? 
s 3’ (4.16) 

From Eqs. (4.5) - (4.16) a number of useful observations can be made: 

1) Comparing Eq. (4.5) with Eq. (2.22) (f or uc = 0) shows that the first zero 

in A$i-ep+p- is (almost) unaffected by the existence of a second massive vector 

boson if the first one couples (almost) purely axial vector lie. 

2) The second and third zeros, s2,3 and &,3, exist if B2 - 4AC 2 0 and 

B2 - 4AC 10, respectively. 

3) One can show that for Mj > Mi and unpolarized incident electron beam 

( Pe = 0) ~2,3 fulfill the inequalities 

B 
M;--A<~,~<M;. (4.17) 
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4) Similarily, Sg,s fulfill the inequality 

8 
S2,s<-~<M~+M~. 

5) (4.17) and (4.18) indicate that the region in 4 where the electroweak 

asymmetries show most structure lies essentially below the msss of the second 

vector boson. 

6) The expressions for A, B and C greatly simplify if also Vj couples purely axial 

vector like to charged leptons and, moreover, is a narrow resonance (rj < Mj). 

This, for example, happens sometimes for additional weak vector bosons in GUT’s 

[23] or, as we shall see below, for the YL-boson if X$ takes on a certain value. In 

this case both sg and s3 exist and one finds: 

2 
82 = aie Mjf 

aqe 

afe + + aie + a$ 
Mj , 

ss=Mj. (4.20) 

If we identify V; with the Z-bosom Eqs. (4.5) to (4.20) should hold to a very 

good approximation as long ss the vector and/or the axial vector coupling con- 

stants of the additional massive vector boson are larger than uc = 1 - 4sin28w m 

0.08 (for sin2& = 0.23 corresponding to Mz = 92 GeV). This, for example, is 

the csse in all GUT’s, left-right symmetric or superstrlng inspired models where 

the coupling constants of the second vector bosons are typically of the order of the 

electromagnetic coupling constant e, or larger. It also holds true in the composite 

weak boson models we are considering. Since .$ is bounded from above (see Eq. 

(3.9)), gy according to Eq. (3.4) has to be larger than about 0.35. 

Comparing the number and the positions of the Zeros in AJFB and ALR in 

models with an additional massive vector boson Vj with the ones in the standard 

model (see Fig. 1 and Eqs. (2.22) and (2.33)), we observe that at least above the 

Z-pole and below dm rather large deviations from the standard model 

may occur. This means that by measuring electroweak asymmetries at LEPII 

energies (4 = 190 GcV) one actually may be sensitive to Vi-masses much larger 

than &. Subsequently, we shall demonstrate this for the Y- and the YL-boson. 

In Section 5 we shall estimate lower limits on the Y- and Y5-masses one should 
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be able to obtain from experiments at LEPI/SLC and LEPII, provided that no 

differences from the standard model asymmetries are observed. 

4.2. IMPLICATIONS OF Y AND YL ON ELECTROWEAK ASYMMETRIES 

Using Eqs. (4.1) - (4.3) it is now a straightforward exercise to calculate the 

electroweak asymmetries in the Y- and YL-case. The vector and axial vector 

coupling constants of the Z-boson, including the mixing effects with the Y(YL)- 

boson, are given in Eqs. (3.17) - (3.20). The coupling constants VqLl and AT,) 

of Y (YL) were discussed in detail in [lo]. F or completeness, we recall here their 

form and summarize those properties of VqL, and Ay(,) which are relevant for our 

subsequent discussion. 

The vector and axial vector coupling constants Vy (Vy,) and Ay (Ay,) of the 

Y(YL)-boson are given by 

and 

m”y 
VY=$ M2y-msQ-A~, 

AyL = -4 by ,zrn&Q+ Ay 1 

vyL = -$‘l- 
rn$ 

M;-m$Q-Ay ’ 

(4.21) 

(4.22) 

(4.23) 

As shown in [lo], Vq,, and AyL 
a 

are rather sensitive to X$. Inserting the ex- 

pressions for by (Eq.(3.6)) and my (Eq. (3.7)) into Eqs. (4.21) - (4.24) one finds 

that 

i) for small values of X$ , Y (YL) couples almost exclusively to j: (jp), and 

due to the vector dominance relation Eq. (3.4) the V’s and A’s become large for 

small X2,, 

ii) for large X$ the YL-boson couples almost purely righthandedly to fermions, 

iii) for 

.+ = (1 - %Pf+ - mb 
3M; - 4rnb 

ra 0.26 (4.25) 
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the YL-boson couples purely axial vector like to charged leptons (i.e. VyL = 0). 

The numerical value in Eq. (4.25) applies for My 2 300 GeV. In this region the 

zero in VyL is almost independent of My. 

Using Eqs. (3.17), (3.18), (4.21) and (4.22) for the u’s and a’s in Eq. (4.3) in 

the Y-case, and (3.19), (3.20), (4.23) and (4.24) in the YL-case we have computed 

the electroweak asymmetries as a function of J;; for a variety of values for the 

two parameters My and Ay 2 characterizing Y and YL. Since efe- + /J+P- is 

the most important channel for LEPI/II and SLC experiments, we have restricted 

ourselves to the asymmetries in this particular reaction. The Z- mass was chosen 

to be 92 GeV, which is very close to the central value measured by UA2 [24]. 

The shape of the asymmetry curves does not change if Mg is varied by a few 

GeV. To compute Tg and TyfL, we assumed that the t-quark mass fulfils the 

inequality Mg/2 < mr Q MY/~, but our results are insensitive to the choice of 

this parameter. Finally, the detector acceptance z was fixed to be z = 1. For 

values z < 1 one has to rescale AFB by a factor 42/3 + z2 (ALR is independent 

of z). 

Our results are presented in Figs. 4 to 8. To illustrate the implications of Y 

and YL on the electroweak asymmetries, we have included the standard model tree- 

level prediction in each figure. Fig. 4 shows how the forward-backward asymmetry 

for an unpolarized electron beam (Pe = 0) and My = 500 GeV changes with X&. 

Curves of a similar shape are also obtained for different values of My. It turns 

out that Y and Y5 affect AFB in a rather different way. While the Y5-boson 

reveals itself through a typical resonance structure, the presence of the Y-boson is 

signalled by a rather marked step which moves with increasing X$ to higher values 

of fi. For fi 5 MZ the deviations from the standard model prediction are rather 

small. Above the Z-pole, however, the Y(YL)-influence is quite dramatic and large 

deviations from the standard model may occur already for fi < My. For small 

(large) values of X$ and 4 + 00 the forward-backward asymmetry approaches 

values close to 3/4 in the Y5-case, thereby reflecting the approximately lefthanded 

(righthanded) coupling of the Y5. Fig. 4 also demonstrates the correctness of the 

general results derived in Section 4.1. For all three values of X& shown, AFB has 

one zero in the Y- , and three zeros in the YL-case. Furthermore, one observes 

that the inequality (4.17) is satisfied and that Y and YL practically do not affect 
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the Srst zero in AFB. In Fig. 4b the parameter A$ has been tuned to the value 

in Eq. (4.25) where VyL vanishes for charged leptons. In this case the resonance 

structure of YL in AFB is maximally enhanced. Identifying the YL-boson with Vj 

from Section 4.1, Eqs. (4.19) and (4.20) are seen to be very well satisfied. 

Fig. 5 illustrates the variation of AFB with My for fixed X5 = 0.2 and 

Pe = 0. While the shape of the curves remain qualitatively the same, the values 

of fi where AFB is minimal, maximal or zero increase almost proportional with 

My. The same effect also occurs for different values of Xs. 

In Fig. 6 we compare the forward-backward asymmetry in the Y- and YL- 

case with My = 500 GeV and Xc = 0.1 for different values of Pe. If fi 5 

150 GeV, AFB is almost independent of Pe since Y(Y5)- contributions are sup- 

pressed and, as we have noticed in Section 2, Pc-dependent Z-boson contributions 

are proportional to ve = 1 - 4sin28gf = 0.08, and therefore small. At larger values 

of fi, however, the forward-backward asymmetry depends considerably on Pe. 

For values of My and X5 different from the ones chosen in Fig. 6 one finds in 

general a variation of AFB with PC similar to the one shown there. Only in the 

Y5-case for X$ ~1 0.26, the value where VyL vanishes for charged leptons, AFB is 

independent of Pe. 

In Figs. 7 and 8 we present our results for ALR/P~. Fig. 7 illustrates how 

ALR/P~ versus 4 behaves as a function of X$. Again the Y (Yl;)-mass is 500 GeV, 

but similar curves are also obtained for other values of My. For fi > Mz, the 

left-right asymmetry in the Y- and YL-case in general differs substantially from the 

standard model prediction of ALR. The presence of the Y-boson is signalled by a 

rather pronounced peak which with increasing X$ is shifted towards higher values 

of fi. The YL-boson, on the other hand, affects ALR in a completely different 

way. For small or large values of X& the appearance of the Y,r, is characterized by a 

step where ALR in general changes its sign. Due to the approximately lefthanded 

(righthanded) coupling of YL, ALR approaches values close to +l (-1) for small 

(h4 A$ and fi > My. If the YL-boson couples purely axial vector like as 

in Fig. 7b (A; FJ 0.26), its influence on the left-right asymmetry is minimized 

and deviations from the standard model prediction are quite small. Identifying 

YL = I$ we immediately see that Eq. (4.12) and the inequality (4.18) are satisfied. 
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Fig. 8, finally, shows the variation of ALR/P~ with My. The parameter Xt 

was chosen to be 0.2, but for different values the results are quite similar. As one 

can see, increasing My results in effects analogous to the ones observed for AFB 

in Fig. 5. While the shape of the curves remains unchanged, the minima, maxima 

and zeros move almost proportional with My to larger values of 4. 

From Figs. 4 to 8 we recognize that in preon models containing an isoscalar 

weak vector boson Y(Y5) the electroweak asymmetries at LEPII energies may be 

significantly affected, even for values of My as large as 1 TeV. In general, the 

influence of Y and YL will be quite different. By measuring APB and ALR at 

LEPII (provided that the incident electron beam can be longitudinally polarized) 

one, therefore, will be sensitive to Y(YL)-masses much larger than 4. On the 

other hand, near the Z-peak the deviations are normally rather small. Since the 

Z-contribution is maximally enhanced at 4 N Mz , Y (YL)-effects there arise pro 

dominantly from the influence of Y (YL) on the Z-boson vector and axial vector 

coupling constants via its mixing with the photon (see Section 3.1). Nevertheless, 

due to the large counting rate at the Z-pole they should be observable if My is 

in the few hundred GeV range. Alternatively, if no deviations from the standard 

model are seen at LEPI/SLC and LEPII, measurements of APB and ALR in ad- 

dition to Mz, mw/MZ and I’(Z + L+L-) will further constrain the (X”y, My) 

parameter space. Since Y and YL affect electroweak asymmetries at LEPII ener- 

gies to a much larger extent than near the Z-pole, the most stringent bounds on 

My and X5 are expected to come from AFB and ALR measurements at LEPII. 

This will be discussed in more detail in the next Section. 

5. Searching for Y and YL at LEP and SLC 

We will now combine the results of the previous Sections in order to obtain 

restrictions on the (Xt, My) parameter space which one can expect to result from 

experiments at LEPI/SLC and LEPII, provided that no deviations from the stan- 

dard model are observed. Rather than performing a full numerical simulation, we 

shall carry out a somewhat simplified analysis and focus on the question which 

quantity may constrain X$ and My most efficiently. We start by briefly recalling 

present experimental limits on (X,, 2 My). In the second part we shall discuss to 
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what extent mW/Mz and I’(Z + L+t-) measurements may reduce the allowed 

X& and My range. In Section 5.3 we consider bounds resulting from electroweak 

asymmetries and in Section 5.4, finally, we combine all constraints and derive lower 

limits on the Y(YL)-masses. 

5.1. CONSTRAINTS ON (X&My) FROM PRESENT EXPERIMENTS 

Limits on Xc and My presently come from measurements of rnw and MZ at 

the CERN pp collider [24] and from low energy lepton-hadron scattering experi- 

ments 1251. Data from neutrino-lepton scattering [25] and AFB measurements at 

PEP and PETRA [26] are not yet accurate enough to yield sensible bounds. 

According to Eqs. (3.7) and (3.10) the Z-boson mass is affected by the Y(YL) 

photon mixing. Since MZ decreases with increasing X$, an upper limit on the 

Y(YL) photon mixing parameter can be obtained from the present experimental 

values of the W- and Z-mass. Using Eqs. (3.7) and (3.10) together with the results 

of Ref. 1241 we find XF < 0.67 (0.75) for Mk = 0.5 TeV (1 TeV) which is slightly 

more restrictive than the bound (3.9) from the consistency condition rn$ 2 0. 

Constraints far better than the ones from rnw and Mz are provided by 

present low energy lepton-hadron scattering data 1251. Since the contributions 

of Y and YL to the effective low energy Lagrangian cannot be parametrized by p 

and sin%W (see e.g. [S]), we have to use the individual couplings I (r(d~)) and 

c(uR) (E(dR)) of left- and righthanded u(d)-quarks in order to obtain information 

about the allowed values of X$ and My. From the expressions derived for the c’s 

in Ref. [S] we observe that the Y(YL)- contributions to the couplings of the u- and 

d-quarks are either proportional to l/m+ or to l/X$ m$. These contributions 

become consequently obviously large for a small value of Xc for the latter term 

whereas for both terms a large value of ,I$ as well implies a bigger contribution 

to the couplings as rnt -+ 0 for X5 -+ X5,,,,, (cf. Eq. (3.7)). Therefore, for given 

My the experimental results [25] for the couplings 

c(uL) = 0.344 f 0.026 c(&) = -0.419f0.022 (5.h) 

E(U(R) = -0.153 f 0.022 C(dR) = 0.076 f 0.041 , (5.lb) 

lead to lower and upper bounds on Xc. Curves (1) and (2) in Fig. 9 (10) rep- 

resent those bounds for the Y(YL)- b oson and a Z-mass of 92 GeV. For My 
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less than about 430 GeV no solution for Xg compatible with (5.1) exists, but for 

Y(YL)-masses exceeding 500 GeV the allowed X$ range is still very large (e.g. 

for My = 800 GeV : 0.035 5 X$ 5 0.702). Since c(d~) gives in general the 

most stringent bounds and the formulas for this quantity coincide in the Y- and 

YL- case, restrictions on XF from low energy lepton-nucleon scattering are rather 

similar for the Y- and the YL-boson. The limiting contour resulting from (5.1) 

depends, however, somewhat on the Z-mass chosen. Varying MZ within the range 

of present experimental data [24] we obtain an absolute lower limit of about 

My > 370 GeV (5.2) 

for the Y (YL)-mass which is somewhat more than what was found in Ref. [S]. The 

deviation can essentially be ascribed to the different experimental values of the E’S 

used here and in Ref. [S]. 

5.2. RESTRICTIONS FROM mw/Mz AND r(Z --L+L-) MEASUREMENTS 

Once the Z-mass has been determined at LEPI and SLC, measurements of 

mw/Mz and the leptonic Z-width will provide new limits on My and X5 (or 

deviations from the standard model will show up). In order to estimate these 

limits we shall assume that the leptonic Z-width can be determined at LEPI/SLC 

with an accuracy of [14] 

cv(Z + L+t-) 
I-(Z + f!+c-) 

=2% 

(see Section 2.3). For the experimental error in the ratio of W- and Z-masses 

we consider two different values. To demonstrate the importance of a precise 

measurement of mw/MZ we calculate limits resulting from this ratio for the error 

expected for ACOL (see Eq. (2.6)) as well ss for the less optimistic one of 

6(“w Mz)=l%. 

We identify the errors given in Eqs. (5.3), (5.4) and (2.6) with 

6R = I RSM - RY(,) I (5.5) 

where R denotes either mw/MZ or T(Z + L?), and RSM and Ry(,) represent 

the corresponding predictions of the standard and the composite W-boson model 
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including leading log corrections, respectively. Assuming that no differences from 

the standard model appear in the mw/Mg and T(Z -+ L+L-) measurements and 

using Eqs. (2.4), (2.8) and (2.10) (with 6.4 = 0) we now convert the results of Figs. 

2 and 3 into contours limiting the allowed range in the (A$, My) plane. Since 

deviations from the standard model grow for mw/Mz and the leptonic Z-width 

with increasing Xc (see Section 3.2), we find from both quantities upper limits 

for the Y(YL) photon mixing parameter. Curve (3a) and (3b) in Fig. 9 represent 

the upper bound on X2, from mw/Mz in the Y-case for the error given in Eq. 

(2.6) and (5.4), respectively. The corresponding limits for the YL-boson are shown 

in Fig. 10. Curve (4) in Fig. 9 (10) gives the upper limit resulting from the 

leptonic Z-width for the Y(YL). In each case a Z-mass of 92 GeV was employed, 

but our results do not change if Mg is varied within the range allowed by present 

experimental data. 

From Fig. 9 (10) we observe that if mw/Mz can be measured at ACOL or 

LEPI/II with an accuracy of 0.2 % it will give for My > 450 GeV (550 GeV) 

the most stringent upper limit on X$. The present upper knit (curve (2)) will be 

reduced by about a factor two. On the other hand, if the ratio of W- and Z-masses 

can be obtained only up to 1 %, a measurement of mw/Mz will only marginally 

improve the upper bound from present low energy lepton-hadron experiments. In 

this case a confirmation of the standard model prediction for T(Z + L+L-) within 

2 % will already be more restrictive for Xc (see Fig. 9 and 10). The upper limit 

resulting from the leptonic Z-width varies significantly with My and for Y(YL)- 

masses less than 400 GeV (450 GeV) the deviation from the standard model is 

2 bigger than 2 % even for vanishing X,. This is a reflection of the finiteness of 6 

(cf. Eq. (3.21)) in the limit X& -+ 0. 

5.3. LIMITS FROM ELECTROWEAK ASYMMETRIES 

Although mw/Mz and I’(Z + -!+L-) measurements at ACOL and LEPI/SLC 

may considerably reduce the allowed X$ range, there will remain a substantial 

part of the (Xc, My) plane which is still compatible with the data. High precision 

experiments at LEPI/SLC and LEPII determining the electroweak asymmetries 

may provide a further reduction of the allowed values of X$ and My. In order to 

see how useful the higher energy of LEPII and a longitudinally polarized e--beam 
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will be, we shall now analyze for four different possible situations the constraints 

on the (X$,My) parameter space which would result if no deviations from the 

standard model forward-backward and left-right asymmetry are observed in the 

reaction e+e- --t p+jb-: 

a) Only AFB(& = Mz) with Pe = 0 can be measured. This corresponds to 

the situation where LEPII is not built and a longitudinally polarized e--beam is 

not available at LEPI/SLC. 

b) Both, AFB(& = Mz) and AFB(~~ = 190 GeV) with Pe = 0 are deter- 

mined. This possibility would e.g. be realized if LEPII is built, but polarized 

beams are not available. 

c) AFB and ALR can be measured at fi = Mz but not at higher values of 

4. This would be the case if LEPII is not built, but a longitudinally polarized 

e--beam can be achieved at LEPI/SLC. 

d) AFB and ALR can both be determined at 4 = Mz and 4 = 190 GeV. 

This could only be realized if LEPII is built and a polarized e--beam would be 

available both at LEPI/SLC and LEPII. 

Before we estimate the limits on (A,, 2 My) in each of the four situations, we 

would like to discuss briefly radiative corrections to the electroweak asymmetries. 

The biggest contribution to these corrections will come from initial and 6nal state 

bremsstrahhmg radiation. Since this is a pure QED effect we expect that it will 

affect the electroweak asymmetries in the standard and the composite W-boson 

model in the same way. Moreover, these corrections turn out to be detector de- 

pendent [27] and we, therefore, shall assume for our subsequent analysis that the 

experimentalists will correct for this effect. 

In Section 2.4 and 2.5 we have noted that in the standard model the purely 

weak corrections to AFB and ALR at the Z-peak constitute a sizeable fraction 

of the corresponding tree-level result and depend on the unknown quantities mt 

and m,y. Varying mt between 30 GeV and 180 GeV and rnH between 10 GeV 

and 1 TeV, AFB and ALR at fi = Mz change by as much as ho.01 and f0.02 

depending somewhat on the Z-mass. Comparison with the expected experimental 

errors (cf. Eqs. (2.14) and (2.26)) h s ows that the variation of the weak corrections 

is significantly larger than GAFB(Mz) and ~ALR(Mz). Measuring the forward- 
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backward and left-right asymmetry at the Z-pole one, therefore, is in the standard 

model sensitive to the t-quark and the Higgs-boson mass. From the point of view 

of testing the standard model versus a composite structure of the weak interactions 

this sensitivity, however, is not an advantage. Since the weak corrections to AFB 

and ALR arise beyond the leading log level and the effective Lagrangian theory 

we use to describe composite W-boson interactions is nonrenormalizable, we have 

no way of properly treating these corrections in the preon model. 

To estimate limits on X5 and My from the electroweak asymmetries at fi = 

Mz we, therefore, adopt the following procedure. AFB and ALR are both, in the 

standard and in the composite W-boson model, treated at the leading log level. 

The standard model prediction for the electroweak asymmetries is not fully deter- 

mined due to the variation of the purely weak corrections with rnt and rnH. This 

leads to a “theoretical” uncertainty which should be superimposed on the possible 

experimental errors. Since the uncertainty is much larger than the expected ex- 

perimental errors (cf. Eqs. (2.14) and (2.26)), th e combined errors will essentially 

coincide with the “theoretical” ones and consequently we shall use 

~AFB(Mz) = 0.01 , GALR(Mz) = 0.02 (5.6) 

in our subsequent analysis. At LEPII energies the purely weak corrections to 

AFB and ALR are less important than at fi = Mz. This can be traced to 

the fact that the zeroth-order contribution at $ = 196 GeV is, in contrast to 

$ = Mz, not suppressed by the small factor ue = 1 - 4sin28w (see Eqs. (2.21) 

and (2.32)), whilst the radiative corrections contain in both cases contributions of 

O(a/(rht20w)) not inhibited by uc. For the errors in AFB and ALR at LEPII 

energies we, therefore, shall use the values given in Eqs. (2.15) and (2.27). 

Identifying R in Eq. (5.5) with any of the asymmetries and assuming that 

no deviations from the standard model appear in asymmetry measurements at 

LEPI/SLC and LEPII we now obtain with Eqs. (2.16 - 18), (2.28 - 30) and the 

results from Section 3 and 4 the boundaries limiting the allowed range of the 

(X$, My) plane. Our results for the Y(YL)-boson are displayed in Fig. 11 (12). 

The labels attached to the plots refer to the corresponding situation a) to d) and 

the detector acceptance was always assumed to be complete (z = 1). 

From Fig. lla and 12a we observe that a measurement of AFB(+ = Mz) 
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with unpolarized beams in general results in a lower and an upper limit on Xc. 

The lower bound can be easily understood by remembering that, according to Eq. 

(3.4), the Y(YL)-boson coupling constant gy sharply increases with decreasing 

X5. If the Y (YL) photon mixing parameter is too small the Y (YL)-contribution to 

AFB(~~ = Mz) dominates over the Z-term and the difference from the standard 

model value becomes larger than 0.01. The upper limit originates mainly from 

the increasing deviation of the vector and the axial vector coupling constant of 

the Z-boson with growing X5 from the corresponding standard model prediction. 

Comparing Fig. lla and 12a with llb and 12b, respectively, we see that the region 

in the (Xc, My) plane which is not excluded shrinks considerably if the forward- 

backward asymmetry is also measured at fi = 190 GeV. This is just a reflection 

of the sensitivity of AFB above the Z-pole to values of My much larger than 

fi. The narrow strips of allowed .$ values in Fig. lib and 12b result from an 

accidental coincidence of the standard and the composite W-boson model values 

of AFB at fi = MZ and fi = 190 GeV. Going from Fig. lla and 12a to llc 

and 12c one recognizes that the restrictions on Xc become also more pronounced 

if in addition to Apg(& = Mz) ALR can be measured at the Z-peak. However, 

the improvement is clearly leas significant than for the case displayed in Fig. llb 

(12b). While the upper bound is significantly reduced over the whole My range 

in the YL-case, the lower limit is considerably strengthened for My < 650 GeV in 

the Y-case. From Fig. lid and 12d we, finally, observe that the allowed region 

in the (X&,My) plane can be most efficiently restricted if both, AFB and ALR, 

are determined at the Z-pole and at LEPII energies. Comparison of Fig. lld 

(12d) with llc (12~) demonstrates the usefulness of the higher LEPII energy in 

reducing the (X&, My) region not excluded by experimental data, whereas from 

Fig. lib (12b) and lld (12d) the advantage of a longitudinally polarized e-- 

beam, especially at LEPII energies, becomes apparent. Due to the sensitivity of 

ALR above the Z-peak to values of My much bigger than 4 the allowed region of 

the (X5, My) plane shrinks considerably if a polarized e--beam can be achieved 

for LEPII and the left-right asymmetry can be measured. 

For our analysis we have assumed that the electroweak asymmetries will be 

determined either at 4 = Mz or at @ = 190 GeV. At LEPI/SLC, however, a 

measurement of AFB and/or ALR in a whole range of a few GeV around the Z- 
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pole will be possible and one might wonder whether thii could lead to considerably 

more stringent bounds than a determination of the electroweak asymmetries just 

at the Z-peak. It turns out that this is not the case. Since the deviations in AFB 

and ALR from the standard model are rather small around fi = Mz (see Figs. 

4 to 8 and Section 4.2) and as the counting rate sharply drops once on is moving 

away from the Z-pole, one does not gain very much from such a measurement. 

The situation may, however, be completely different in the LEPII case. If LEPII 

could be operated also at fi values sufficiently different from the designed one of 

190 GeV and AFB and ALR could be determined, the sensitivity of the electroweak 

asymmetries above the Z-pole to values of My much larger than @ may lead to 

a further significant improvement of the bounds on A$ and My. 

5.4. LOWER LIMITS ON My FROM LEP AND SLC EXPERIMENTS 

Finally, we may combine the bounds from present low energy lepton-hadron ex- 

periments, from mw/MZ and l’(Z ---f L+L-) measurements and from electroweak 

asymmetries. The resulting lower limits on My for each of the four situations 

discussed in Section 5.3 are presented in Table 1. 

In situation a), where AFB(~~ = MZ) is the only asymmetry which is de- 

termined, we find that the bounds from electroweak asymmetries are in general 

weaker than the ones resulting from mw/Mz and I’(Z ---t !+A!-). The lower limits 

on My, therefore, can be directly read off from Figs. 9 and 10. If we compare 

them with the present lower bound of My > 370 GeV (cf. (5.2)) we see that 

if LEPII is not built and a longitudinally polarized e--beam is not available at 

LEPI/SLC the lower limit can only slightly be improved at future e+e- colliders. 

Furthermore, we observe that the bound on My in this case is almost independent 

from the accuracy of the mw/MZ measurement. 

The lower limits on My can be significantly strengthened if LEPII is built and, 

consequently, AFB(& = 190 GeV) can be determined (situation b) ). For the Y- 

boson the most restrictive upper and lower bound on At then results from mw/MZ 

or the leptonic Z-width, and the forward-backward asymmetry, respectively. In 

the YL-case, on the other hand, the contour limiting the allowed region of the 

(A$, My) plane almost exclusively comes from AFB measurements at fi = Mz 

and 4 = 190 GeV, and the lower limit on My, therefore, is independent of the 
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precision achieved for mw/Mz. 

If instead of AF~(& = 190 GeV) the left-right asymmetry at the Z-peak can 

be determined, i.e. LEPII is not built, but a polarized e--beam can be achieved 

for LEPI/SLC (situation c) ), the bounds obtained for situation a) can only in the 

Y-case be improved somewhat. The allowed region of the (As, My) plane is only 

slightly reduced by Apg and ALR measurements at fi = Mz. For the YL-boson 

the upper limit from the electroweak asymmetries almost coincides with the one 

from mw/M,g if this ratio can be measured with an accuracy of 0.2 %. 

The most restrictive lower bounds on My can be found if AFB and ALR 

both can be measured at the Z-pole and at LEPII energies (situation d) ). If 

mw/MZ can be determined with an accuracy of 0.2 % Y(YL)-masses less than 

1.0 TeV (0.9 TeV) can be excluded. The allowed aress in the (A$, My) plane for 

this case are shown in Fig. 13. From Fig. 13a we observe that for the Y-boson 

the upper and lower limit on At result from mW/MZ and electroweak asymmetry 

measurements, respectively. The bound on My, therefore, depends somewhat on 

the precision which can be achieved for the ratio of W- and Z-masses. If mW/Mz 

can be obtained only with 1% error, the lower limit on My is reduced to 830 GeV. 

For the YL-boson, on the other hand, the limiting contour exclusively results from 

the electroweak asymmetries (see Fig. 13b) and the bound on My is independent 

from the accuracy in the mw/Mg determination. 

Comparing the limits on My for situation a) to d) (cf. Table 1) we see that 

at LEPI/SLC even with a longitudinally polarized e--beam at best Y(YL)-masses 

less than 600 GeV (500 GeV) can be excluded. These values could only then be 

significantly improved if the errors (5.6) for the forward-backward and the left-right 

asymmetry at the Z-peak, which are mainly due to the theoretical uncertainty of 

the standard model prediction for AFB(~~ = Mz) and ALR(~~ = Mz), could be 

considerably reduced. 

If LEPII is built, the lower bound on My can be improved up to 1 TeV and 

the most severe restrictions on A$ arise in general from measurements of AFB and 

ALR at LEPII energies. 
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6. Conclusions 

In this paper we have analyzed the implications of isoscalar weak vector bosons 

Y and YL on measurable quantities at future e+e- colliders. The Y and YL are 

coupled to the weak hypercharge current and its lefthanded part, respectively, and 

such particles typically appear in preon models with a composite structure of the 

weak interactions. 

After a discussion of the relevant observables and their standard model predic- 

tions, we have developed an effective Lagrangian formalism to describe composite 

weak vector boson interactions. We also derived the expression for the Z-mass 

and the Lagrangian for interactions of the Z-boson with quarks and leptons in 

the presence of Y and YL, and analyzed how they affect the observable quantities 

mwJMz and r(Z -+ t++L-). 

In Section 4 the electroweak asymmetries were considered in detail. In the 

first part we presented the tree-level expressions for AFB and ALR for the general 

csse of two massive vector bosons with arbitrary vector and axial vector coupling 

constants and discussed the location of zeros of the electroweak asymmetries which 

are useful in order to gain information about the shape of AFB and ALR versus 

fi in the two vector boson case. Our results can be applied to any model with 

additional weak vector bosons, e.g. GUT’s, left-right symmetric or superstring 

inspired models. 

In the second part we studied the asymmetries in the Y- and YL-case, and 

illustrated the results of the general analysis in the first part. 

Finally, in Section 5 we obtained restrictions on the (X$, My) parameter space 

which one can expect to result if experiments at LEP and SLC agree with the 

standard model predictions within the possible experimental accuracies. 

Our results can be summarized as follows: 

i) The ratio mw/MZ is affected in the same way by Y and YL and is always 

larger than in the standard model (see Fig. 2). Deviations from the standard 

model increase (decrease) with increasing XF (My). 

ii) On the other hand, Y and YL influence the leptonic Z-width in a completely 

different way: While P(Z -+ L+L-) in the Y-case is larger than in the stan- 
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dard model, the contrary is true for the YL-boson (see Fig. 3) 

iii) For any model containing two massive neutral vector bosons there are at 

most three zeros in Apg and ALR. If one of the vector bosom couples 

(almost) axial vector like to charged leptons, as it is the case for the Z- 

boson, the first zero is (almost) unaffected by the existence of the second 

massive vector boson. The two other zeros, if they exist, are bounded from 

above in thii case (see (4.17-18)). 

iv) At fi values below and around the Z-mass Y and YL affect AFB and ALR 

only slightly. Above the Z-peak, however, the electroweak asymmetries are 

rather sensitive to the presence of lsoscalar weak vector bosons. At LEPII 

energies large deviations from the standard model predictions may occur 

even for Y(YL)-masses much larger than 4 (see Figs. 4 to 8). 

v) If experiments at LEP and SLC agree with the standard model within the 

possible experimental accuracies, the region of the (X$, My) plane which is 

compatible with present data will be strongly reduced (see Figs. 9 to 13). 

With LEPI/SLC Y(YL)-masses up to 609 GeV (599 GeV) can be excluded. 

Due to the sensitivity of the electroweak asymmetries above the Z-pole to 

values of My much larger than &, the lower limit on My may be pushed 

up to 1 TeV at LEPII (if a longitudinally polarized e--beam can be realized 

at LEPII). 

Our results clearly demonstrate the usefulness of the higher LEPII energy and 

of a polarized incident electron beam in searching for Y and Y,r,. Since isoscalar 

weak vector bosons in preon models with composite W- and Z-bosons are expected 

to have a mass of the order of a few hundred GeV, many models of this type would 

be excluded if one could place a lower bound of 1 TeV on the Y(YL)-masses. Our 

analysis shows that this limit can be reached with LEPII but not with LEPI/SLC 

unless the errors ~AFB(& = Mz) and ~ALR(& = MZ) can be significantly 

reduced. This, however, will be difficult since as we have seen in Section 5.3, the 

dominant uncertainty arises from the conceptual difficulty of comparing the fully 

renormalizable standard model with an effective theory in which only leading log 

corrections can be included. 

The analysis performed in this paper can easily be repeated for any other 
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model containing a second massive weak vector boson. The main difference to the 

Y(YL)-case are the different vector and axial vector coupling constants. In view 

of the results for the general two vector boson case obtained in Section 4.1 for the 

electroweak asymmetries, we in general expect large deviations in AFB and ALR 

from the standard model at LEPB energies. If asymmetry measurements agree 

with the standard model predictions at LEPII strong limits on the msss and/or 

the coupling constant will not only be obtainable for Y and YL but also for excited 

Z-bosons [28] in composite weak boson models, or additional massive neutral vec- 

tor bosona appearing in GUT’s, left-right symmetric models, superstring inspired 

models etc. Our results may, therefore, at least qualitatively be valid in a more 

general context. 
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Table 1 

Situation a b c d 

Y-boson 460 (450) 720 (560) 600 (530) 1010 (830) 

YL-boson 500 (500) 880 (880) 500 (500) 880 (880) 

Lower bounds on My (in GeV) resulting from a combination of the constraints 

from present low energy lepton-nucleon data, a measurement of rn~/Mz with 

0.2 % error and I’(Z + e+L-) with 2 % error, and from electroweak asymmetries. 

Numbers in parentheses apply if the ratio of W- and Z- mssses can be obtained 

only with a precision of 1.0 %. 
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FIGURE CAPTIONS 

1. The standard model forward-backward asymmetry A$;-“+“- for un- 

polarized beams and ideal detector acceptance (z = 1) and the standard 

model left-right asymmetry ALR e+e---rCl+lc-/Pe (PC: degree of longitudinal 

polarization of the incident electron beam) versus &. The Z-mass was 

chosen to be 92 GcV. In the lower right corner a close-up of the region 

near the Z-pole is shown. 

2. The ratio mw/MZ versus Mz in presence of the isoscalar boson Y or Yr, 

(solid lines) 

a) for My = 500 GeV, Xf.. = 0.2, 0.4, 0.6 ; 

b) for Xc = 0.2, MY = 300, 500, 800, 1000 GeV . 

The numbers attached to the curves denote the values of A”y and My 

(in GeV), respectively. The dashed line represents the standard model 

prediction. 

3. The leptonic Z-width I’(Z + L+L-) versus Mz in presence of the 

lsoscalar boson Y (solid lines) and Y5 (dotted lines) 

a) for My = 506 GeV, X”y = 0.0, 0.2, 0.6 ; 

b) for X”y = 0.2, My = 500, 800, loo0 GeV . 

On the curves the corresponding values of X$, respectively My (in GeV) 

are shown. The dashed line represents the standard model prediction. 

4. The forward-backward asymmetry AFB c+e---tp’lr- for unpolarized electron 

beam (PC = 0) and ideal detector acceptance (z = 1) in the Y(Y5)-case 

(dashed (dotted) line) for My = 500 GeV and 

a) A$ = 0.1, 

b) X2, = 0.26, 

c) A$ = 0.5. 

The solid line represents the standard model prediction. The Z-mass was 

chosen to be 92 GeV. 

5. The forward-backward asymmetry AFB e+e---rp+~‘- for unpolarized electron 

beam (PC = 0) and ideal detector acceptance (z = 1) in the Y(YL)- 
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case (dashed (dotted) lines) for A; = 0.2 and My = 500 GeV and 

My = 1 TeV, respectively. The numbers attached to the curves denote 

the Y(Y5)-mass in GeV. The solid line represents the standard model 

prediction. The Z-mass was chosen to be 92 GeV. 

e+e--+p+/.i 6. The forward-backward asymmetry AFB for ideal detector accep- 

tance (z = l), A$ = 0.1, My = 500 GeV and Pe = 0 (solid line), Pe = 0.5 

(dashed line) and Pe = 1 (dotted line) 

a) in the Y-case, 

b) in the Y&-case. 

For the Z-mass we used 92 GeV. 

7. The left-right asymmetry ALR efe--4’fP-/Pe in the Y(YL)-case (dashed 

(dotted) line) for My = 500 GeV and 

a) A$ = 0.1, 

b) A+ = 0.26, 

c) A$ = 0.5. 

The solid line represents the standard model prediction. The Z- mass is 

92 GeV. 

8. The left-right asymmetry ALR e+e-*p+p-/Pe in the Y(YL)-case (dashed 

(dotted) lines) for A$ = 0.2 and My = 500 GeV and My = 1 TeV, 

respectively. On the curves the corresponding values of My (in GeV) 

are shown. The solid line gives the standard model prediction. For the 

Z- mass we used 92 GeV. 

9. Lower and upper limits on A$ versus My in the Y-case. Curves (1) and 

(2) represent the lower and upper limit from present low energy lepton- 

nucleon experiments, respectively. Curves (3) and (4) show the upper 

limits which would result from measurements of mW/MZ and r(Z -+ 

L+L-) with 

a) 0.2% error (curve (3a)) 

b) 1.0% error (curve (3b)) 

in mw/Mg and 2% error in the leptonic Z-width. The Z-mass wss 

chosen to be 92 Get’. 
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10. The same as in Fig. 9 for the YL-case. 

11. Contours limiting the allowed $, and My range which result from a 

measurement of 

a) AFB(~~ = Mz) with 1 % error, 

b) Apg(fi = Mg) and A~,y(fi = 190 GeV) with 1 % and 3 % error, 

respectively, 

c) Apg(fi = Mz) and ALR(& = Mz) with 1% and 2 % error, respec- 

tively, 

d) AFB and ALR at both 6 = Mz and fi = 190 GeV with the corre- 

spondmg errors from a), b) or c) 

in the Y-case. The hatched side of the boundary curves indicates the 

allowed region. For the Z-mass we used 92 GeV. 

12. The same as in Fig. 11 for the YL-case. 

13. Allowed regions in the (X$,My) plane (hatched areas) resulting from 

a combination of the lower (curve(l)) and upper limits (curve(2)) from 

present lepton-hadron scattering data, the upper bounds from a mea- 

surement of mW/MZ with 0.2 % error (curve (3)) and l?(Z + e+e-) 

with 2 % error (curve (4)), and the limiting contour from AJ-B and ALR 

measurements at fi = Mg and 4 = 190 GeV (curve (5)) 

a) for the Y-boson, 

b) for the YL-boson. 

The Z-mass was chosen to be 92 GeV. 
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